22 research outputs found

    Design of Energy-efficient Hierarchical Scheduling for Integrated Modular Avionics Systems

    Get PDF
    AbstractRecently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitions becomes popular as an alternative to the traditional federated architecture. This study investigates the problem of designing hierarchical scheduling for IMA systems. The proposed scheduler model enables strong temporal partitioning, so that multiple hard real-time applications can be easily integrated into an uniprocessor platform. This paper derives the mathematic relationships among partition cycle, partition capacity and schedulability under the real-time condition, and then proposes an algorithm for optimizing partition parameters. Real-time tasks with arbitrary deadlines are considered for generality. To further improve the basic algorithm and reduce the energy consumption for embedded systems in aircraft, a power optimization approach is also proposed by exploiting the slack time. Experimental results show that the designed system can guarantee the hard real-time requirement and reduce the power consumption by at least 14%

    Virulence Determinants Are Required for Brain Abscess Formation Through Staphylococcus aureus Infection and Are Potential Targets of Antivirulence Factor Therapy

    Get PDF
    Bacterial brain abscesses (BAs) are difficult to treat with conventional antibiotics. Thus, the development of alternative therapeutic strategies for BAs is of high priority. Identifying the virulence determinants that contribute to BA formation induced by Staphylococcus aureus would improve the effectiveness of interventions for this disease. In this study, RT-qPCR was performed to compare the expression levels of 42 putative virulence determinants of S. aureus strains Newman and XQ during murine BA formation, ear colonization, and bacteremia. The alterations in the expression levels of 23 genes were further confirmed through specific TaqMan RT-qPCR. Eleven S. aureus genes that persistently upregulated expression levels during BA infection were identified, and their functions in BA formation were confirmed through isogenic mutant experiments. Bacterial loads and BA volumes in mice infected with isdA, isdC, lgt, hla, or spa deletion mutants and the hla/spa double mutant strain were lower than those in mice infected with the wild-type Newman strain. The therapeutic application of monoclonal antibodies against Hla and SpA decreased bacterial loads and BA volume in mice infected with Newman. This study provides insights into the virulence determinants that contribute to staphylococcal BA formation and a paradigm for antivirulence factor therapy against S. aureus infections

    Temporal Predictability of Online Behavior in Foursquare

    No full text
    With the widespread use of Internet technologies, online behaviors play a more and more important role in humans’ daily lives. Knowing the times when humans perform their next online activities can be quite valuable for developing better online services, which prompts us to wonder whether the times of users’ next online activities are predictable. In this paper, we investigate the temporal predictability in human online activities through exploiting the dataset from the social network Foursquare. Through discretizing the inter-event times of users’ Foursquare activities into symbols, we map each user’s inter-event time sequence to a sequence of inter-event time symbols. By applying the information-theoretic method to the sequences of inter-event time symbols, we show that for a user’s Foursquare activities, knowing the time interval between the current activity and the previous activity decreases the entropy of the time interval between the next activity and current activity, i.e., the time of the user’s next Foursquare activity is predictable. Much of the predictability is explained by the equal-interval repeat; that is, users perform consecutive Foursquare activities with approximately equal time intervals. On the other hand, the unequal-interval preference, i.e., the preference of performing Foursquare activities with a fixed time interval after another given time interval, is also an origin for predictability. Furthermore, our results reveal that the Foursquare activities on weekdays have a higher temporal predictability than those on weekends and that users’ Foursquare activity is more temporally predictable if his/her previous activity is performed in a location that he/she visits more frequently

    Run-Time Reconfiguration Strategy and Implementation of Time-Triggered Networks

    No full text
    Time-triggered networks are deployed in avionics and astronautics because they provide deterministic and low-latency communications. Remapping of partitions and the applications that reside in them that are executing on the failed core and the resulting re-routing and re-scheduling are conducted when a permanent end-system core failure occurs and local resources are insufficient. We present a network-wide reconfiguration strategy as well as an implementation scheme, and propose an Integer Linear Programming based joint mapping, routing, and scheduling reconfiguration method (JILP) for global reconfiguration. Based on scheduling compatibility, a novel heuristic algorithm (SCA) for mapping and routing is proposed to reduce the reconfiguration time. Experimentally, JILP achieved a higher success rate compared to mapping-then-routing-and-scheduling algorithms. In addition, relative to JILP, SCA/ILP was 50-fold faster and with a minimal impact on reconfiguration success rate. SCA achieved a higher reconfiguration success rate compared to shortest path routing and load-balanced routing. In addition, scheduling compatibility plays a guiding role in ILP-based optimization objectives and ‘reconfigurable depth’, which is a metric proposed in this paper for the determination of the reconfiguration potential of a TT network

    Run-Time Reconfiguration Strategy and Implementation of Time-Triggered Networks

    No full text
    Time-triggered networks are deployed in avionics and astronautics because they provide deterministic and low-latency communications. Remapping of partitions and the applications that reside in them that are executing on the failed core and the resulting re-routing and re-scheduling are conducted when a permanent end-system core failure occurs and local resources are insufficient. We present a network-wide reconfiguration strategy as well as an implementation scheme, and propose an Integer Linear Programming based joint mapping, routing, and scheduling reconfiguration method (JILP) for global reconfiguration. Based on scheduling compatibility, a novel heuristic algorithm (SCA) for mapping and routing is proposed to reduce the reconfiguration time. Experimentally, JILP achieved a higher success rate compared to mapping-then-routing-and-scheduling algorithms. In addition, relative to JILP, SCA/ILP was 50-fold faster and with a minimal impact on reconfiguration success rate. SCA achieved a higher reconfiguration success rate compared to shortest path routing and load-balanced routing. In addition, scheduling compatibility plays a guiding role in ILP-based optimization objectives and ‘reconfigurable depth’, which is a metric proposed in this paper for the determination of the reconfiguration potential of a TT network
    corecore